[PAST EVENT] Honors Thesis Defense (Timothy McDade)

April 26, 2012
2pm - 3pm
Jones Hall, Room 307
200 Ukrop Way
Williamsburg, VA 23185Map this location
Abstract: During the last century, the oyster population of the Chesapeake Bay area has diminished greatly due to overfishing, pollution and climate change. Our Optimal Control model finds a sustainable solution that balances oyster harvesting with the health of the population. We wish to find the value of our Effort (control) function that harvests the most oysters possible without fishing the population to extinction. We create a Hamiltonian function and apply Bang-Bang Control in order to find a singular (E*) between 0 and Emax such that (E*) will balance out with the natural growth rate of the population to form a constant, stable population. Our model uses analytical and numerical solutions to determine the optimal sustainable population (N*) and effort (E*) for a Bang-Bang Control model. The analytical model also solves for times T1 and T2 at which the piecewise heaviside effort function switches values of E(t). In marine population study, there has not been extensive use of mathematics, especially optimal control theory.

Consequently, as seen in our Future Work section, there is much room for expansion upon current scholarship regarding optimal control theory. Only by incorporating several variables can one succeed in in using mathematics to develop a successful harvesting strategy.

[[jxshix, Junping Shi]]