Data Science
[PAST EVENT] Mathematics Colloquium: Wenhui Shen (Marquette University)
Location
VirtualAccess & Features
- Open to the public
Title: Sufficient dimension folding in regression via distance covariance for matrix?valued predictors
Abstract: In modern data, when predictors are matrix/array?valued, building a reasonable model is much more difficult due to the complicate structure. However, dimension folding that reduces the predictor dimensions while keeps its structure is critical in helping to build a useful model. In this paper, we develop a new sufficient dimension folding method using distance covariance for regression in such a case. The method works efficiently without strict assumptions on the predictors. It is model?free and nonparametric, but neither smoothing techniques nor selection of tuning parameters is needed. Moreover, it works for both univariate and multivariate response cases. In addition, we propose a new method of local search to estimate the structural dimensions. Simulations and real data analysis support the efficiency and effectiveness of the proposed method.
Join Zoom Meeting
https://cwm.zoom.us/j/91822743229?pwd=VGdTbFF5VVFoNnlLTVFjWG9aa3BWdz09
Meeting ID: 918 2274 3229
Passcode: 123456
Contact
GuanNan Wang