Mathematics Events
[PAST EVENT] Honors Thesis Defense: Xin Zou
Access & Features
- Open to the public
Honors Thesis Defense: Xin Zou
Adviser: Junping Shi
Thesis title: A Mathematical Model of Economic Growth of Two Geographical Regions
Abstract: A mathematical model of coupled differential equations is proposed to model economic growth of two geographical regions (cities, regions, continents) with flow of capital and labor between each other. It is based on two established mathematical models: the neoclassical economic growth model by Robert Solow, and the logistic population growth model. The capital flow, labor exchange and spatial heterogeneity are also incorporated in the system. The model is analyzed via equilibrium and stability analysis, and numerical simulations. It is shown that a strong attraction to the high capital region can lead to unbalanced economic growth even when the two geographical regions are similar. The model can help policy makers to decide whether the region should have an open economy or a more closed one. The results of the model can predict the trend of the trade between regions and provide a new insight into some hotly debated contemporary controversial topics.